edexcel

Mark Scheme (Results)

January 2012

International GCSE Physics (4PH0)
Paper 1P
Science Double Award (4SC0) Paper 1P

Abstract

Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Pearson about Edexcel qualifications on our dedicated Science telephone line: 0844576 0037

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UG030801
All the material in this publication is copyright
© Pearson Education Ltd 2012

Question number	Answer	Notes	Marks
1 (a) (i)	A		1
(ii)	B		1
(b) (i)	C		1
(ii)	nearest above (DOP)		1
(iii)	Comment on device (plastic) insulator / does not conduct;	(double) insulated / no current (through) / cannot become live	1
	Comment on user no risk of shock / electrocution;	No electricity reaches user / person cannot touch live parts	

| Question
 number | Answer | Notes |
| :--- | :--- | :--- | :--- |
| 2 (d) | MAX TWO FOR EACH
 measuring cylinder -
 eyes to water level / perpendicular view;
 to avoid parallax;
 measurement at bottom of meniscus;
 measuring cylinder on flat surface / clean cylinder;
 electronic balance -
 place on stable surface /avoid disturbing balance;
 set to zero / check zero;
 finding mass without an with water - (tare or
 subtraction); | Ignore clean balance |

Question number	Answer	Notes	Marks
3 (a)	(stopping distance $=$) thinking distance + braking distance	Could be reversed	1
(b)	Any two of:	Ignore references to time	2
	as speed increases / car goes faster, the (thinking/braking/stopping) distance increases;		
	as thinking distance increases so does braking distance;		
		Allow use of values from graph	
	difference in pattern between thinking/braking distances identified;	Reject: thinking distance proportional to	
	increase in thinking distance < increase in braking distance / increase in thinking distance is linear or proportional / increase (in braking / stopping) is non linear / WTTE	braking distance	
(c)	30 (m)	ALLOW any value from 28 to 32 m	1

| Question
 number | Answer | Notes |
| ---: | :--- | :--- | :--- |
| 3 (d) | use the minimum / lowest values obtained | REJECT find the average |
| (e) (i) | Marks
 thinking distance -
 no change;
 depends on speed/ driver / reaction (time) | |
| (ii) | braking distance -
 increase;
 less friction/ less grip | Ignore reference to time e.g. takes longer
 Ignore skidding, sliding, slippery road |

Question number	Answer	Notes	Marks
4 (a)	change in direction of waves at a boundary	ALLOW change in speed ALLOW idea of 'boundary' such as changing medium, or examples such as 'going from air into a glass block'	1
(b)	correct label for i correct label for r	ALLOW labels written out in full as "incidence" or "angle of incidence" etc REJECT if angles are the wrong way around	2
(c) (i)	refractive index $=\sin i / \sin r$	ALLOW ' n ' for refractive index REJECT speed in 1 /speed in 2	1
(ii)			MAX 6
	Method max 4 marks: draw around block;		
	mark positions of incident and emergent rays; (remove block and) draw refracted ray;	Accept pin or pencil method	
	measure i;	Ignore mention of protractor	
	measure r; measure angle(s) to the normal; range of values;	i.e. different values of i not just repeating	
	Data max 2 marks: (graph of) sin i against sin r; graph is straight line; DOP gradient gives refractive index; DOP		

Question number	Answer	Notes	Marks
5 (a)	D	parallel field (DOP) (b)	ACCEPT equally spaced and straight / equally spaced and do not change direction pole pieces arranged correctly e.g. North facing South idea of magnets being the correct distance apart
ACCEPT points made on an annotated diagram REJECT description of poles as positive / negative	3		
ACCEPT "close together", "not touching" ACCEPT idea that field is produced in the space between the N pole of one magnet and the S pole of the other REJECT answers that are clearly referring to electromagnets	3		

Question number	Answer	Notes	Marks
7 (c)	ANY 5 relevant points, e.g. Explanation of what reaction time is; Reaction time affects readings / reaction time does matter; Reaction times vary; Reaction times do not cancel out; Reaction time should be considered / allowed for; Kefe is right (about reaction times); reaction time typically at least 0.1 s; which is large compared to measured times / large \% error; time should only be to 1 s.f.; so final value should also be to 1 s.f. / Kefe's value more suitable; 3 s.f. inappropriate; closer to accepted value does not mean more accurate;	Answers should ideally relate to how appropriate the precision of the measurements was, linking this to the number of significant figures merited Consideration of reaction time and its measurement may score a number of marks	MAX 5

Question number	Answer	Notes	Marks
8 (b) (i)	X-series, Y- parallel	BOTH REQUIRED for the mark	1
(ii)	ALLOW REVERSE ARGUMENTS in terms of THREE SUITABLE, e.g.- mark twice	Max 3	
series advantage - fewer wires; series advantage - lower resistance values; series disadvantage - one fails, circuit fails; series disadvantage - no independent control;	IGNORE refs to efficiency ACCEPT correct answers that link to battery voltage / current, etc		

Question number	Answer	Notes	Marks
9 (a)	gravity		1
(b) (i)	6960 (km)		1
(ii)	equation quoted (NO MARK)		3
	conversion of km OR min;	ECF on (i)	
	$\mathrm{v}=(2 \times \pi \times 6960$ 000 $) /(96 \times 60)$; 7600;	Allow for rounding errors	
(c)	EITHER		3
	grav pe reduces when closer; (so) ke increases;	Grav force increases so ke increases = 1 (mixing arguments)	
	because total energy conserved;		
	gravitational attraction / field strength increases when closer;	REJECT 'gravity higher' 'gravity stronger' ACCEPT 'pull of gravity' 'force of gravity'	
	mass remains constant; so accelerates;		
(d) $\begin{aligned} & \text { (i) } \\ & \\ & \\ & \text { (ii) }\end{aligned}$	electromagnetic (spectrum)	Accept transverse (waves)	1
	Any two from	Idea of comparison must be there	2
	X-rays have shorter wavelength; ORA X-rays have higher frequency; ORA	REJECT 'visible light can be seen' / eq	
	X-rays have higher energy; ORA	REJECT 'visible light can be seen'/ eq	
	X-rays have greater penetration range; ORA X-rays have greater effects on living tissue; ORA		

Question number		Answer	Notes	Marks
10 (a)	(i)	GPE $=$ mass $\times \mathrm{g} \times$ height	ACCEPT equivalent rearrangement ACCEPT suitable abbreviations e.g. GPE $=\mathrm{mgh}$ ACCEPT 'gravity' or 'gravitional field strength' or 'acceleration due to gravity' for g	1
	(ii)	$\begin{aligned} & 78 \times 10 \times 5 ; \\ & 3900(\mathrm{~J}) ; \end{aligned}$		2
	(iii)	$3900 ;$ J/ joule;	```Accept 4000 J REJECT 'Nm' for ' \(J\) ' ALLOW kJ only if it matches the value (i.e. 3.9)```	2
	(i)	efficiency = useful energy output / total energy input	ALLOW 'power' for 'energy'	1
	(ii)	```in one second - useful energy out = (30 x 3900) / 60; efficiency = 1950 / 7500; 0.26 / 26%```	Allow useful energy out $=(30 \times 4000) / 60$; efficiency $=2000 / 7500$; $0.27 \text { / 27\% }$	3
			CQ on $\mathrm{a}(\mathrm{ii})$	
(c)		right general shape		3
		reasonably correct proportions / 3kW and 12 kW seen		
		correctly labelled	ACCEPT "input / waste / useful" or "electrical / kinetic or GPE / waste heat or sound"	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 (a) \\
(b)
\end{tabular} \& ```
78 seen;
= 78 / 60;
1.3;
air resistance (when moving);
increases as velocity / speed increases;
reducing resultant force;
``` \& \begin{tabular}{l}
acceleration \(=(\) final \(v-\) starting \(v) /\) time; \\
CORRECT ANSWER WITH NO WORKING = (3) \\
ACCEPT drag \\
IGNORE wind resistance \\
IGNORE friction with ground 'friction' alone needs qualification \\
REJECT 'reaches terminal velocity'
\end{tabular} \& 3

3 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 (a) | ANY FOUR - <br> Conduction from hot plate to pan; conduction through pan; conduction from pan to water; convection in the water; conduction from water to potato; conduction through potato; |  | Max 4 |
| (b) | ANY THREE - <br> microwaves are electromagnetic waves; penetrate ( $a$ few cm ) into the food; cause water molecules to vibrate more / heat water; conduction through the rest of the potato | no marks for whether or not the statement is true <br> needs ref to water, not just particles / molecules needs conduction ref, not just spreads out | Max 3 |
| (c) | Any five from Electromagnetic induction; coil creates magnetic field around it; which cuts through the metal pan; field alternates / changes; inducing a voltage in the pan; causing a current in the pan; current makes the pan get hot; <br> which heats the water by conduction; water convects energy to potato; | Effect named - not just 'induction' (given in question) <br> Pan heating must be linked to current, not just 'the pan gets hot' | Max 5 |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx January 2012

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

